Summary: Let \(H(n, q^2) \) be a non-degenerate Hermitian variety of \(PG(n, q^2) \), \(n \geq 2 \). Let \(NU(n + 1, q^2) \) be the graph whose vertices are the points of \(PG(n, q^2) \setminus H(n, q^2) \) and two vertices \(u, v \) are adjacent if the line joining \(u \) and \(v \) is tangent to \(H(n, q^2) \). Then \(NU(n + 1, q^2) \) is a strongly regular graph. In this paper we show that the automorphism group of the graph \(NU(3, q^2) \) is isomorphic either to \(PGU(3, q) \), the automorphism group of the projective unitary group \(PGU(3, q) \), or to \(S_3 \wr S_4 \), according as \(q \neq 2 \), or \(q = 2 \).

MSC:
- 20-XX Group theory and generalizations
- 05-XX Combinatorics

References:

[5] Chakravarti, I.: Some properties and applications of Hermitian varieties in a finite projective space \(\backslash (PG(N, q^{-2})\backslash) \) in the construction of strongly regular graphs (two-class association schemes) and block designs. J. of Comb. Theory B. 11, 268-283 (1971) - Zbl 0229.05026
[8] Ihringer, F., Pavese, F., Smaldore, V.: Graphs cospectral with \(\backslash (NU(2n+1, q^2), n \neq 3) \). Discrete math. 344(11), 1125609 (2021) - Zbl 1472.05097

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.