Du, Li
On η-biharmonic hypersurfaces with constant scalar curvature in higher dimensional pseudo-Riemannian space forms. (English) J. Math. Anal. Appl. 518, No. 1, Article ID 126670, 20 p. (2023)

Summary: In this paper, η-biharmonic hypersurfaces M^n_r with constant scalar curvature in a pseudo-Riemannian space form are studied. Under the assumption that M^n_r has diagonalizable shape operator with at most six distinct principal curvatures, we prove that M^n_r has constant mean curvature. As an application, we obtain a partial classification result of these hypersurfaces and show that (nc)-biharmonic hypersurfaces must be minimal.

MSC:
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
58E20 Harmonic maps, etc.

Keywords:
pseudo-Riemannian space forms; η-biharmonic maps; hypersurfaces; diagonalizable shape operator; constant scalar curvature

Full Text: DOI

References:
[23] Liu, J.-C.; Yang, C., Hypersurfaces in \(\mathbb{E}^{n+1} \) satisfying \(\Delta \overrightarrow{H} = \lambda \overrightarrow{H} \) with at most three distinct principal curvatures, J. Math. Anal. Appl., 419, 562-573 (2014)
[24] Liu, J.-C.; Yang, C., Lorentz hypersurfaces in \(\mathbb{E}_{1}^{n+1} \) satisfying \(\Delta \overrightarrow{H} = \lambda \overrightarrow{H} \) with at most three distinct principal curvatures, J. Math. Anal. Appl., 434, 222-240 (2016)
[25] Liu, J.-C.; Yang, C., Hypersurfaces in \(\mathbb{E}_{1}^{n+1} \) satisfying \(\Delta \overrightarrow{H} = \lambda \overrightarrow{H} \) with at most two distinct principal curvatures, J. Math. Anal. Appl., 451, 14-33 (2017)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.