Summary: The determinantal complexity of a polynomial \(P \in \mathbb{F}[x_1, \ldots, x_n] \) over a field \(\mathbb{F} \) is the dimension of the smallest matrix \(M \) whose entries are affine functions in \(\mathbb{F}[x_1, \ldots, x_n] \) such that \(P = \text{Det}(M) \). We prove that the determinantal complexity of the polynomial \(\sum_{i=1}^{n} x_i^n \) is at least \(1.5n - 3 \). For every \(n \)-variate polynomial of degree \(d \), the determinantal complexity is trivially at least \(d \), and it is a long-standing open problem to prove a lower bound which is super linear in \(\max\{n, d\} \). Our result is the first lower bound for any explicit polynomial which is bigger by a constant factor than \(\max\{n, d\} \), and improves upon the prior best bound of \(n + 1 \), proved by Alper et al. (2017) for the same polynomial.

MSC:

68Q06 Networks and circuits as models of computation; circuit complexity
68Q15 Complexity classes (hierarchies, relations among complexity classes, etc.)
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)

Keywords:
determinantal complexity; algebraic complexity theory; lower bounds; algebraic circuits

Software:

GitHub

Full Text: DOI arXiv

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2023 FIZ Karlsruhe GmbH Page 1

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.