Sturm, Karl-Theodor

Random Riemannian geometry in 4 dimensions. (English) Zbl 07605724

Summary: We construct and analyze conformally invariant random fields on 4-dimensional Riemannian manifolds \((M, g) \). These centered Gaussian fields \(h \), called \textit{co-biharmonic Gaussian fields}, are characterized by their covariance kernels \(k \) defined as the integral kernel for the inverse of the Paneitz operator

\[
p = \frac{1}{8\pi^2} \left[\Delta^2 + \text{div} \left(2\text{Ric} - \frac{2}{3}\text{scal} \right) \nabla \right].
\]

The kernel \(k \) is invariant (modulo additive corrections) under conformal transformations, and it exhibits a precise logarithmic divergence

\[|k(x, y) - \log \frac{1}{d(x, y)}| \leq C. \]

In terms of the co-biharmonic Gaussian field \(h \), we define the \textit{quantum Liouville measure}, a random measure on \(M \), heuristically given as

\[d\mu(x) := e^{\gamma h(x) - \frac{\gamma^2}{2} k(x, x)} d\text{vol}_{g}(x), \]

and rigorously obtained a.s. for \(|\gamma| < \sqrt{8} \) as weak limit of the RHS with \(h \) replaced by suitable regular approximations \((h_{\ell})_{\ell \in \mathbb{N}} \). For the flat torus \(M = \mathbb{T}^4 \), we provide discrete approximations of the Gaussian field and of the Liouville measures in terms of semi-discrete random objects, based on Gaussian random variables on the discrete torus and piecewise constant functions in the isotropic Haar system.

For the entire collection see [Zbl 1493.11005].

MSC:

- 60G15 Gaussian processes
- 58J65 Diffusion processes and stochastic analysis on manifolds
- 31C25 Dirichlet forms

Keywords:

random Riemannian geometry; Gaussian field; conformally invariant; Paneitz operator; bi-Laplacian; biharmonic; membrane model; quantum Liouville measure

Full Text: DOI

References:

2. L. Dello Schiavo, R. Berry, K.-T. Sturm, Conformally invariant random fields, quantum Liouville measures, and random Paneitz operators on Riemannian manifolds of even dimension (2021). Arxiv 2105.13925

[17] P. Oswald, Haar system as Schauder basis in Besov spaces: the limiting cases for \(0 < p \le 1\). INS-preprint no. 1810. Bonn University

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.