Calderón-Villalobos, Angel; Sánchez, Iván

Hattori topologies on almost topological groups. (English) Zbl 07653711
Topology Appl. 326, Article ID 108411, 15 p. (2023)

Authors’ abstract: For a subset A of an almost topological group G, we define the Hattori topological space $H(A)$, where $H(A)$ is a topological space whose underlying set is G and whose topology is defined as follows: if $x \in A$ (respectively, $x \notin A$), then the neighborhoods of x in $H(A)$ are the same neighborhoods of x in the reflection group (respectively, G). In this paper, we show that if G is an almost topological group and A is a proper subset of G, then $H(A)$ is regular if and only if G is regular. We also prove that $\chi(H(A)) = \chi(G)$ for each proper subset A of G. If G is an almost topological group and G is not a topological group, we show the following:

i) For each infinite subspace B of G, we have that $n\omega(B) = |B|$.

ii) If A is a proper subset of G, then $\omega(H(A)) = d(G) \cdot \chi(G) \cdot |G \setminus A|$.

iii) In particular, if A is a proper subset of G, then $H(A)$ is second-countable if and only if G is first-countable separable and $G \setminus A$ is countable.

iv) If A is a subset of G, then $n\omega(H(A)) = n\omega(G) \cdot (|G \setminus A| + \omega)$.

Reviewer: Zhangyong Cai (Nanning)

MSC:
54H11 Topological groups (topological aspects)
54A25 Cardinality properties (cardinal functions and inequalities, discrete subsets)
54A10 Several topologies on one set (change of topology, comparison of topologies, lattices of topologies)

Keywords:
almost topological groups; paratopological groups; Hattori spaces; reflection group; second-countable; first-countable; network weight

Full Text: DOI

References:
[13] Lin, F.; Li, J., Some topological properties of spaces between the Sorgenfrey and usual topologies on real number

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.