Summary: We give some general results about the generators and relations for the higher level Zhu algebras for a vertex operator algebra. In particular, for any element u in a vertex operator algebra V such that u has weight greater than or equal to $-n$ for $n \in \mathbb{N}$, we prove a recursion relation in the nth level Zhu algebra $A_n(V)$ and give a closed formula for this relation. We use this and other properties of $A_n(V)$ to reduce the modes of u that appear in the generators for $A_n(V)$ as long as $u \in V$ has certain properties (properties that apply, for instance, to the conformal vector for any vertex operator algebra or if u generates a Heisenberg vertex subalgebra), and we then prove further relations in $A_n(V)$ involving such an element u. We present general techniques that can be applied once a set of reasonable generators is determined for $A_n(V)$ to aid in determining the relations of those generators, such as using the relations of those generators in the lower level Zhu algebras and the zero mode actions on V-modules induced from those lower level Zhu algebras. We prove that the condition that $(L(-1) + L(0))v$ acts as zero in $A_n(V)$ for $n \in \mathbb{Z}_+$ and for all v in V is a necessary added condition in the definition of the Zhu algebra at level higher than zero. We discuss how these results on generators and relations apply to the level n Zhu algebras for the Heisenberg vertex operator algebra and the Virasoro vertex operator algebras at any level $n \in \mathbb{N}$.

MSC:

- 17B68 Virasoro and related algebras
- 17B69 Vertex operators; vertex operator algebras and related structures
- 81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, W-algebras and other current algebras and their representations
- 81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

Keywords:
vertex operator algebras; conformal field theory; Virasoro algebra

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.