Summary: In the present paper, we introduce two-dimensional categorified Hall algebras of smooth curves and smooth surfaces. A categorified Hall algebra is an associative monoidal structure on the stable ∞-category $\text{Coh}^b(\mathcal{R}\mathcal{M})$ of complexes of sheaves with bounded coherent cohomology on a derived moduli stack $\mathcal{R}\mathcal{M}$. In the surface case, $\mathcal{R}\mathcal{M}$ is a suitable derived enhancement of the moduli stack \mathcal{M} of coherent sheaves on the surface. This construction categorifies the K-theoretical and cohomological Hall algebras of coherent sheaves on a surface of Zhao and Kapranov-Vasserot. In the curve case, we define three categorified Hall algebras associated with suitable derived enhancements of the moduli stack of Higgs sheaves on a curve X, the moduli stack of vector bundles with flat connections on X, and the moduli stack of finite-dimensional local systems on X, respectively. In the Higgs sheaves case we obtain a categorification of the K-theoretical and cohomological Hall algebras of Higgs sheaves on a curve of Minets and Sala-Schiffmann, while in the other two cases our construction yields, by passing to K_0, new K-theoretical Hall algebras, and by passing to H_{stBM}, new cohomological Hall algebras. Finally, we show that the Riemann-Hilbert and the non-abelian Hodge correspondences can be lifted to the level of our categorified Hall algebras of a curve.

Lurie, J.: Derived algebraic geometry IX: Closed immersions. Available at J. Lurie’s webpage (2011)

Pantev, T., Toën, B.: Poisson geometry of the moduli of local systems on smooth varieties. Publ. RIMS Kyoto Univ. 57, 959-991 (2021) Zbl 1474.53082 MR 4322004

Porta, M., Sala, F.: Simpson’s shapes of schemes and stacks. Available at this link

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.