Pecci, Filippo; Stoianov, Ivan

Bounds and convex heuristics for bi-objective optimal experiment design in water networks.

(English) Zbl 07706581 Comput. Oper. Res. 153, Article ID 106181, 10 p. (2023)

Summary: Optimal Experiment Design for parameter estimation in water networks has been traditionally formulated to maximize either hydraulic model accuracy or spatial coverage. Because a unique sensor configuration that optimizes both objectives may not exist, these approaches inevitably result in sub-optimal configurations with respect to one of the objectives. This paper presents a new bi-objective optimization problem formulation to investigate the trade-offs between these conflicting objectives. We develop a convex heuristic to approximate the Pareto front, and compute guaranteed bounds to discard portions of the criterion space that do not contain non-dominated solutions. Our method relies on a Chebyshev scalarization scheme and convex optimization. We implement the proposed methods for optimal experiment design in an operational water network from the UK. For this case study, the convex heuristic computes near-optimal solutions for the individual objective minimization problems, and tight bounds on the true Pareto front of the considered bi-objective optimization problem.

MSC: 90Bxx Operations research and management science

Keywords: optimal experiment design; multi-objective optimization; water distribution networks

Software: JuMP

Full Text: DOI arXiv

References:

[12] De Schuetzen, W. B.; Walters, G. A.; Savic, D., Optimal sampling design for model calibration using shortest path, genetic
and entropy algorithms, Urban Water, 2, 2, 141-152 (2000)

[34] Ushakov, A. V.; Vasilyev, I., Near-optimal large-scale k-medoids clustering, Inform. Sci., 545, 344-362 (2021) - Zbl 1475.62196

[44] Zhou, X.; Xu, W.; Xin, K.; Yan, H.; Tao, T., Self-adaptive calibration of real-time demand and roughness of water distribution

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.