Alzer, H.; Yakubovich, S.

Identities for combinatorial sums involving trigonometric functions. (English) Zbl 07714098

Integral Transforms Spec. Funct. 34, No. 8, 563-569 (2023)

Summary: Let

\[A_{m,n}(a) = \sum_{j=0}^{m} (-4)^j \left(\frac{m+j}{2j} \right) \sum_{k=0}^{n-1} \sin\left(a + \frac{2k\pi}{n}\right) \cos^{2j}(a + \frac{2k\pi}{n}) \]

and

\[B_{m,n}(a) = \sum_{j=0}^{m} (-4)^j \left(\frac{m+j+1}{2j+1} \right) \sum_{k=0}^{n-1} \sin\left(a + \frac{2k\pi}{n}\right) \times \cos^{2j+1}(a + \frac{2k\pi}{n}), \]

where \(m \geq 0 \) and \(n \geq 1 \) are integers and \(a \) is a real number. We present two proofs for the following results:

(i) If \(2m + 1 \equiv 0 \pmod{n} \), then

\[A_{m,n}(a) = (-1)^m n \sin((2m+1)a). \]

(ii) If \(2m + 1 \not\equiv 0 \pmod{n} \), then \(A_{m,n}(a) = 0. \)

(iii) If \(2(m+1) \equiv 0 \pmod{n} \), then

\[B_{m,n}(a) = (-1)^m \frac{n}{2} \sin(2(m+1)a). \]

(iv) If \(2(m+1) \not\equiv 0 \pmod{n} \), then \(B_{m,n}(a) = 0. \)

MSC:

05A19 Combiantorial identities, bijective combinatorics
33B10 Exponential and trigonometric functions
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

Keywords:

combinatorial identity; trigonometric function; Chebyshev polynomials of the first and second kind

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.