Franek, F.; Rödl, Vojtěch
Ramsey problem on multiplicities of complete subgraphs in nearly quasirandom graphs.
(English) [Zbl 0772.05070]
Graphs Comb. 8, No. 4, 299-308 (1992).

Summary: Let \(k_t(G) \) be the number of cliques of order \(t \) in the graph \(G \). For a graph \(G \) with \(n \) vertices let \(c_t(G) = \binom{k_t(G) + k_t(G)}{2} \). Let \(c_t(n) = \min \{ c_t(G) : |G| = n \} \) and let \(c_t = \lim_{n \to \infty} c_t(n) \). An old conjecture of P. Erdős [Publ. Math. Inst. Hung. Acad. Sci., Ser. A7, 459-464 (1962; Zbl 0116.01202)], related to Ramsey’s theorem states that \(c_t = 2^{1/(2t)} \). Recently it was shown to be false by A. Thomason [J. Lond. Math. Soc., II. Ser. 39, No. 2, 246-255 (1989; Zbl 0638.05037)]. It is known that \(c_t(G) \sim 2^{1/(2t)} \) whenever \(G \) is a pseudorandom graph. Pseudorandom graphs — the graphs “which behave like random graphs” — were introduced and studied in F. R. K. Chung, G. L. Graham and R. M. Wilson [Combinatorica 9, No. 4, 345-362 (1989; Zbl 0715.05057)] and A. Thomason [Random graphs ’85, Lect. 2nd Int. Semin., Poznań/Pol. 1985, Ann. Discrete Math. 33, 307-311 (1987; Zbl 0632.05045)]. The aim of this paper is to show that for \(t = 4 \), \(c_t(G) \geq 2^{1/(2t)} \) if \(G \) is a graph arising from pseudorandom by a small perturbation.

MSC:
05C55 Generalized Ramsey theory
05C80 Random graphs (graph-theoretic aspects)

Keywords:
Ramsey problem; multiplicities; nearly quasirandom graphs; conjecture of Erdős; cliques; Ramsey’s theorem; pseudorandom graph; small perturbation

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically