Giorgadze, G.; Khimshiashvili, G.
On the index of the gradient of a real invertible polynomial. (English. Russian original)
Zbl 07738523

Summary: We present a number of observations concerning the so-called invertible polynomials introduced and studied in a series of papers on mathematical physics and singularity theory. Specifically, we consider real versions of invertible polynomials and investigate invariants of the associated isolated hypersurface singularities. By the very definition, such a polynomial is weighted homogeneous and its gradient vector field \(\text{grad} f \) has an isolated zero at the origin; hence its index \(\text{ind}_0 \text{grad} f \) is well defined. This index, referred to as the gradient index of the polynomial, is our main concern. In particular, we give an effective estimate for the absolute value of the gradient index \(\text{ind}_0 \text{grad} f \) in terms of the weighted homogeneous type of \(f \) and investigate its sharpness. For real invertible polynomials in two and three variables, we give the whole set of possible values of the gradient index. As an application, in the case of three variables we give a complete list of possible topological types of Milnor fibres of real invertible polynomials, which generalizes recent results of L. Andersen on the topology of isolated real hypersurface singularities. In conclusion we present a few open problems and conjectures suggested by our results.

MSC:
05-XX Combinatorics
14-XX Algebraic geometry

Keywords:
weighted homogeneous polynomial; invertible polynomial; isolated hypersurface singularity; gradient vector field; mapping degree; moduli algebra; signature of quadratic form; Milnor fibre; link of singularity; Euler characteristic

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2023 FIZ Karlsruhe GmbH
1059.58027

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.