Ding, Qi; Jost, J.; Xin, Y. L.

Summary: We study the Dirichlet problem for minimal surface systems in arbitrary dimension and codimension via mean curvature flow, and obtain the existence of minimal graphs over arbitrary mean convex bounded C^2 domains for a large class of prescribed boundary data. This result can be seen as a natural generalization of the classical sharp criterion for solvability of the minimal surface equation by Jenkins-Serrin. In contrast, we also construct a class of prescribed boundary data on just mean convex domains for which the Dirichlet problem in codimension 2 is not solvable. Moreover, we study existence and the uniqueness of minimal graphs by perturbation.

MSC:
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53A07 Higher-dimensional and codimensional surfaces in Euclidean and related n-spaces
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)

Keywords:
Dirichlet problem for minimal surface systems; minimal graphs; mean convex domains; mean curvature flow; Jenkins-Serrin criterion

Full Text: DOI arXiv

References:
[5] Ding, Qi; Jost, J.; Xin, Y. L., Boundary regularity for minimal graphs and mean curvature flows with higher codimension (2017)
[8] Gilbarg, D., Boundary value problems for nonlinear elliptic equations in \(\mathbb{M} \) variables, 151-160 · Zbl 021.0710.02

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2023 FIZ Karlsruhe GmbH

Morrey, C. B., Multiple Integrals in the Calculus of Variations (1966), Springer Verlag: Springer Verlag N.Y. · Zbl 0142.38701

Osserman, R., The problem of the least area and the problem of Plateau. Math. Z., 763-796 (1930) · Zbl 56.0436.01

Sauvigny, F., Multiple solutions for the nonparametric Plateau problem within the Euclidean space \(\mathbb{R}^p \) of arbitrary dimension. Calc. Var., 140 (2016)

Simon, Leon, Lectures on geometric measure theory · Zbl 0546.49019

Xu, Xiaowei; Yang, Ling; Zhang, Yongsheng, Dirichlet boundary values on Euclidean balls with infinitely many solutions for the minimal surface system. J. Math. Pures Appl., 266-300 (2019) · Zbl 1425.53011

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.