Chaskalovic, Joël; Assous, Franck; Jamshidipour, Hessam

A new second order Taylor-like theorem with an optimized reduced remainder. (English)

Zbl 0775.6726

Summary: In this paper, we derive a variant of the Taylor theorem to obtain a new minimized remainder. For a given function \(f \) defined on the interval \([a, b]\), this formula is derived by introducing a linear combination of \(f' \) computed at \(n+1 \) equally spaced points in \([a, b]\), together with \(f''(a) \) and \(f''(b) \). We then consider two classical applications of this Taylor-like expansion: the interpolation error and the numerical quadrature formula. We show that using this approach improves both the Lagrange \(P_2 \)-interpolation error estimate and the error bound of the Simpson rule in numerical integration.

MSC:

26Dxx Inequalities in real analysis
65Dxx Numerical approximation and computational geometry (primarily algorithms)
41Axx Approximations and expansions

Keywords:

Taylor’s theorem; Lagrange interpolation; interpolation error; Simpson rule; quadrature error

Full Text: DOI arXiv

References:

[9] Chaskalovic, J., A probabilistic approach for solutions of deterministic PDE’s as well as their finite element approximations, Axioms, 10, 349 (2021)
[13] Chaskalovic, J.; Assous, F., A refined first-order expansion formula in \((\mathbb{R}^d \times \mathbb{R}^d) \times \mathbb{R}^d \): Application to interpolation and finite element error estimates (2023), submitted

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.