Summary: In this paper we continue the work of using the recent advances in algebraic K-theory to extend computations done in characteristic p to the mixed characteristic setting using perfectoid rings. We extend the work of Hesselholt-Nikolaus in [18] on the algebraic K-Theory of cuspidal curves. We consider both cuspidal curves and the p-completion of cuspidal curves. Along the way we also study the K-theory of the p-completed affine line over a perfectoid ring.

MSC:

19Dxx Higher algebraic K-theory
55Pxx Homotopy theory
14Fxx (Co)homology theory in algebraic geometry

Keywords:

K-theory; topological cyclic homology; syntomic cohomology; prismatic cohomology

Full Text: DOI arXiv

References:

[12] Elmanto, E., THH and TC are (very) far from being homotopy functors. J. Pure Appl. Algebra, 8, 12 (2021), Paper No. 106640 - Zbl 1460.19003
McCandless, J., On curves in K-theory and TR (2021)

Raskin, S., On the Dundas-Goodwillie-McCarthy theorem (2018), eprint:

Riggenbach, N., The S1 Assembly Map on K-Theory and Topological Cyclic Homology (2021), Indiana University. ProQuest LLC: Indiana University. ProQuest LLC Ann Arbor, MI, pp. 81

The Stacks project authors, The Stacks project (2023)

Weibel, C. A., Mayer-Vietoris sequences and mod \(\mathbb{p} \) K-theory, 390-407 · Zbl 0499.18012

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.