On the fractional matching polytope of a hypergraph. (English) Zbl 0779.05030

Let $\mathcal{H} = (V, E)$ be a hypergraph where V is a finite set and E is a multiset of subsets of V. A subset \mathcal{M} of E is called a matching if every two of its members are disjoint, and a function $w : E \to \mathbb{R}_+$ is called a fractional matching if $\sum_{e \in E} w(e) \leq 1$ for all $v \in V$. For $b : E \to \mathbb{R}_+$ let

$$\nu_b = \max \left\{ \sum_{e \in \mathcal{M}} b(e) : \mathcal{M} \text{ is a matching} \right\},$$

$$\nu^*_b = \max \left\{ \sum_{e \in E} b(e)w(e) : w \text{ is a fractional matching} \right\}.$$

In the case $b \equiv 1$ write briefly ν and ν^*. \mathcal{H} is called k-uniform if $|e| = k$ for all $e \in E$, and \mathcal{H} is called intersecting if $\nu = 1$. The following theorems are proved:

(1) Any hypergraph \mathcal{H} has a matching \mathcal{M} with $\sum_{e \in \mathcal{M}} (|e| - 1 + \frac{1}{|e|}) \geq \nu^*$.

(2) For any k-uniform hypergraph \mathcal{H} and any $b : E \to \mathbb{R}_+$ we have $(k - 1 + \frac{1}{k}) \nu_b \geq \nu^*_b$.

(3) If w is a fractional matching of an intersecting hypergraph \mathcal{H}, then $\sum_{e \in E} w(e) |e|^{-1+1/|e|} \leq 1$.

(4) If \mathcal{H} is k-uniform and intersecting, and $\bigcap_{e \in \mathcal{H}} e = \emptyset$, then $\frac{1}{|\mathcal{E}|^2} \sum_{e \in E} \sum_{f \in E} |e \cap f| \geq \frac{k^2}{k^2-k+1}$.

Reviewer: K. Engel (Rostock)

MSC:
05C65 Hypergraphs
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
05D15 Transversal (matching) theory

Keywords:
fractional matching polytope; k-uniform hypergraph; hypergraph; matching; fractional matching; intersecting hypergraph

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically...