Khajah, H. G.; Ortiz, E. L.

Ultra-high precision computations. (English) [Zbl 0792.65010]

Summary: We describe a machine independent Fortran subroutine which performs the four basic arithmetic operations with a degree of accuracy prescribed by the user. Tables of Chebyshev expansions of orders 48 and 50 for some basic mathematical functions are obtained as a result of applying this subroutine in conjunction with the recursive formulation of the tau method. A recently devised technique for the sharp determination of upper and lower error bounds for tau method approximations enables us to find the degree n required to achieve a prescribed accuracy ε over a given interval $[a, b]$. A number of practical illustrations are given.

MSC:

65D20 Computation of special functions and constants, construction of tables
65A05 Tables in numerical analysis
26-04 Software, source code, etc. for problems pertaining to real functions
26A09 Elementary functions

Keywords:
ultra-high precision computations; tables; Fortran subroutine; Chebyshev expansions; basic mathematical functions; tau method; error bounds

Software:
Algorithm 524; ALGOL 68; Cephes

Full Text: DOI

References:

[12] Clenshaw, C.W., Chebyshev series for mathematical functions, () · Zbl 0114.07101

[19] Tables of the exponential function \(e^x \), () - Zbl 65.1328.03

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.