Let X be a real or complex Banach space. The strong topology on the algebra $B(X)$ of all bounded linear operators on X is the topology of pointwise convergence of nets of operators. It is given by a basis of neighbourhoods of the origin consisting of sets of the form

$$U(\varepsilon; x_1, \ldots, x_n) = \{ T \in B(X) : \|Tx_i\| < \varepsilon, \ i = 1, \ldots, n \},$$

where x_1, \ldots, x_n are linearly independent elements of X and ε is a positive real number. Closure in the strong topology will be called strong closure for short. It is well known that the strong closure of a subalgebra of $B(X)$ is again a subalgebra.

In this paper we study strongly closed subalgebras of $B(X)$, in particular, maximal strongly closed subalgebras. Our results are given in Section 1, while in Section 2 we give the motivation for this study and pose several open questions.

MSC:

47L10 Algebras of operators on Banach spaces and other topological linear spaces

46H35 Topological algebras of operators

Keywords:

topology of pointwise convergence of nets of operators; strong closure of a subalgebra of $B(X)$; strongly closed subalgebras of $B(X)$; maximal strongly closed subalgebras

Full Text: DOI EuDML