Witte, Dave
Measurable quotients of unipotent translations on homogeneous spaces. (English)

Let G be a Lie group, Γ be a lattice in G, U be a nilpotent unipotent subgroup of G and consider the U-action on $\Gamma \backslash G$ by translation on the right. There is a natural class of measurable quotients (factors) of the action, called double coset quotients, on quotient spaces of the form $\Lambda \backslash G / K$, where Λ is a closed subgroup of G containing Γ and K is a group of affine transformations of $\Lambda \backslash G$ (satisfying certain necessary conditions).

In the paper under review it is shown that when the U-action is ergodic any measurable quotient is a double coset quotient. The proof is via application of (a general version of) Ratner’s theorem on classification of invariant measures of actions of unipotent subgroups, to the diagonal action of U on $\Lambda' \backslash G \times \Lambda' \backslash G$.

Ratner’s theorem as originally reported involved further conditions that G be connected and Γ be discrete. The author does not assume these conditions in his above-mentioned result and in that context he shows how Ratner’s theorem may be extended to the more general setting. Ratner’s published version does not involve G being connected. The author’s alternative approach however seems to be of interest from a technical point of view, for other generalizations.

Reviewer: S.G.Dani (Bombay)

MSC:
28D15 General groups of measure-preserving transformations
37A99 Ergodic theory
22D40 Ergodic theory on groups

Keywords:
unipotent groups; measurable quotients; double coset quotients; invariant measures; actions

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.