Del Corso, G. M.
Randomization and the parallel solution of linear algebra problems. (English) Zbl 0835.65062

Summary: We present randomized algorithms for the solution of some numerical linear algebra problems. The problems studied are the approximation of the dominant eigenvalue of a matrix, the computation of the determinant and of the rank of a matrix. The parallel cost of these methods is lower than that of the best deterministic algorithms for the same problems. In particular, we show an $O(\log n)$ algorithm for the parallel computation of the determinant of a matrix and an $O(\log n + \log k)$ algorithm that allows to approximate the vector produced at the kth step of the power method. The “probabilistic” error is bounded in terms of the Chebyshev inequality.

MSC:
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65C05 Monte Carlo methods
65F40 Numerical computation of determinants
65F30 Other matrix algorithms (MSC2010)
65Y05 Parallel numerical computation

Keywords:
error bound; randomization; Monte Carlo method; randomized algorithms; dominant eigenvalue; determinant; rank; parallel computation; power method

Full Text: DOI

References:
[5] Feller, W., ()
[7] Mulmuley, K., A fast parallel algorithm to compute the rank of a matrix over an arbitrary field, (), 338-339 · Zbl 0635.65040
[10] Del Corso, G.M., Algoritmi probabilistici in algebra lineare numerica, ()

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.