Deng, Young-Ching; Wang, Yue-Li; Chang, Jou-Ming

This paper gives a combinatorial proof of the formula

$$n^m = \sum_{k_1! \cdot \cdots \cdot k_{n-1}!} \frac{m!}{k_1! k_2! \cdots k_{n-1}!},$$

where m and n are positive integers, $m \leq n$, and $k_1, k_2, \ldots, k_{n-1}$ are nonnegative integers satisfying $0 \leq k_1 + \cdots + k_i \leq \min(i, m)$ for all i.

Reviewer: J. Cigler (Wien)

MSC:
05A19 Combinatorial identities, bijective combinatorics
05A15 Exact enumeration problems, generating functions

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.