Let l and u be two functions on the interval $[a, b]$. Let G be a linear subspace of continuous functions on $[a, b]$, and let K be the functions in G such that $l \leq g \leq u$. This work characterizes best approximations from K. This work differs from other studies having similar intent by allowing more general restricting functions l and u. In particular l and u are allowed to be equal to a finite set S. The characterization is an alternation characterization of the error function. It involves the Dini derivatives of l and u on S. The characterization is used to prove the uniqueness of the best approximation. The theorem uses an extensive collection of technical definitions and conditions. No new examples are presented.

Reviewer: D.Wulbert (La Jolla)

MSC:

41A50 Best approximation, Chebyshev systems
41A29 Approximation with constraints

Keywords:

alternating error function; best approximations; error function