Boyd, J. P.
Asymptotic Chebyshev coefficients for two functions with very rapidly or very slowly divergent power series about one endpoint. (English) [Zbl 0857.42015]

Let $f(\varepsilon)$ be a divergent power series $f(\varepsilon) \sim \sum_{j=0}^{\infty} b_n \varepsilon^n$ with $b_n = o(n^{2G})$ where G is the “Gevrey order” of the asymptotic series. The two cases when G is infinite or zero are exemplified by functions

$$f_{\text{sub}}(\varepsilon) = \int_{0}^{\infty} \frac{dt}{(1 + \varepsilon t)} \quad \text{and} \quad f_{\text{sup}}(\varepsilon; A) = \sqrt{A} \int_{0}^{\infty} \frac{\exp(-A \log^2 t) \ dt}{1 + \varepsilon t}.$$

Asymptotic approximations for the coefficients of those functions are derived. They are limits with $r \to 0^+$ and $r \to 1^-$ of well-known asymptotics [see, for instance, G. Németh, Mathematical approximation of special functions: ten papers on Chebyshev expansions (Nova Science, New York) (1992), J. P. Boyd, Math. Comput. 39, 201-206 (1982; Zbl 0524.41014)]:

$$a_{\text{sub}}^n \sim (-\text{const} \ n \log^{1/2}(n)) \quad \text{and} \quad a_{\text{sup}}^n = o(\exp(-\text{const} \ n^r)) \quad \text{for any} \ r > 0.$$

Reviewer: A. Lukashov (Saratov)

MSC:
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)

Keywords:
Fourier series in Chebyshev polynomials; divergent power series

Full Text: DOI

References:
[1] Sibuya, Y., Gevrey property of formal solutions in a parameter, (), 393-401
[7] Berry, M.V., Stokes phenomenon for superfactorial asymptotic series, (), 437-444 · Zbl 0787.40002

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.