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Minimal barriers have been introduced by De Giorgi in order to provide a notion of weak solution for
partial differential equations as, for example, the mean curvature flow, which is suitable to describe
the evolution even past singularities. The authors study general properties of minimal barriers for the
evolution equation ∂u/∂t+F (∇u, ∇2u) = 0. They prove that for lower semicontinuous F local and global
barriers are the same. Further, they show that in this case the minimal barrier coincides with that one
where F is replaced by F +, the smallest degenerate elliptic function above F . One section is devoted to
the joint and disjoint set property in terms of the function F .
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