Fu, Chin-Mei; Fu, Hung-Lin; Rodger, C. A.
The minimum size of critical sets in latin squares. (English) Zbl 0891.62051

Summary: A critical set C of order n is a partial latin square of order n which is uniquely completable to a latin square, and omitting any entry of the partial latin square destroys this property. The size $s(C)$ of a critical set C is the number of filled cells in the partial latin square. The size of a minimum critical set of order n is $s(n)$. It is likely that $s(n)$ is approximately $4^{-1}n^2$, though to date the best-known lower bound is that $s(n) \geq n + 1$.

We obtain some conditions on C which force $s(C) \geq \lfloor (n - 1)/2 \rfloor^2$. For $n > 20$, this is used to show that in general $s(n) \geq \lfloor (7n - 3)/6 \rfloor$, thus improving the best-known result.

MSC:
62K05 Optimal statistical designs
05B15 Orthogonal arrays, Latin squares, Room squares

Keywords:
critical set C; design construction; partial latin square

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.