Gutiérrez, José M.; Hernández, Miguel A.
Third-order iterative methods for operators with bounded second derivative. (English)

Authors’ summary: We analyze the classical third-order methods (Chebyshev, Halley, super-Halley) to solve a nonlinear equation \(F(x) = 0 \), where \(F \) is an operator defined between two Banach spaces. Until now the convergence of these methods is established assuming that the second derivative \(F'' \) satisfies a Lipschitz condition. In this paper we prove, by using recurrence relations, the convergence of these and other third-order methods just assuming \(F'' \) is bounded. We show examples where our conditions are fulfilled and the classical ones fail.

Reviewer: B. Döring (Düsseldorf)

MSC:
65J15 Numerical solutions to equations with nonlinear operators
47J25 Iterative procedures involving nonlinear operators

Keywords:
nonlinear operator equations; Chebyshev method; super-Halley method; third-order methods; Banach spaces; convergence; recurrence relations

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.