Ezquerro, J. A.; Gutiérrez, J. M.; Hernández, M. A.

The authors consider a family of third-order iterative methods for computing solutions of the univariate nonlinear equation \(f(x) = 0 \). One such method is that of Chebyshev

\[
t_{n+1} = G_0(t_n) = t_n - \frac{f(t_n)}{f'(t_n)} \left(1 + \frac{1}{2} \frac{f(t_n)f''(t_n)}{[f'(t_n)]^2} \right),
\]

and convex acceleration of Newton’s method \(t_{n+1} = G_1(t_n) \) another. A homotopy between \(G_0 \) and \(G_1 \) is defined and leads to a family of iterations which is a convex combination of \(G_0 \) and \(G_1 \), with parameter \(\alpha \), for which convergence analysis is provided. Then it is shown that a method from this family, with suitable values of \(\alpha \), can always be applied to solve \(f(x) = 0 \). Some numerical examples and practical remarks complete the paper.

Reviewer: A. Swift (Palmerston North)

MSC:
65H05 Numerical computation of solutions to single equations
65H20 Global methods, including homotopy approaches to the numerical solution of nonlinear equations

Keywords:
Chebyshev method; third-order iterative methods; nonlinear equation; Newton’s method; homotopy; numerical examples

Full Text: DOI

References:
[2] DOI: 10.1080/00207169208804051 · Zbl 0747.65030 · doi:10.1080/00207169208804051
[6] DOI: 10.1017/S0004972700030586 · Zbl 0893.47043 · doi:10.1017/S0004972700030586
[8] DOI: 10.1080/00207169308804162 · Zbl 0812.65038 · doi:10.1080/00207169308804162

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.