Consider a metaplectic central extension $1 \to A \to \tilde{G} \to G$, where $G = GL(n)$ over a field. The author looks at liftings of the standard outer involution ι of $GL(n)$. Recall that $\iota(g) = w_0 t g t^{-1} w_0^{-1}$ sends diagonal matrices to diagonal matrices and upper triangular matrices to upper triangular ones. To the metaplectic extension a 2-cocycle class $[\tau] \in H^2(GL(n), A)$ is associated, which is known to be invariant under ι. For explicit computations one would like to use a cocycle τ representing this class $[\tau]$. It was mistakenly claimed by D. A. Kazhdan and S. J. Patterson [in: “Metaplectic forms”, Publ. Math., Inst. Hautes Étud. Sci. 59, 35-142 (1984; Zbl 0559.10026)] that one may choose τ to be invariant under ι. On the perfect subgroup $SL(n)$ one can try a Steinberg–Matsumoto cocycle, and hope it to be invariant. In any case, using the remaining $GL(1)$, the author finds an obstruction to invariance of τ under ι. Next he treats the case of topological central extensions. The results are then used to lift ι to a continuous automorphism of \tilde{G} in the case of most frequent interest.

Reviewer: W. van der Kallen (Utrecht)

MSC:
19C09 Central extensions and Schur multipliers
20G99 Linear algebraic groups and related topics

Keywords:
Steinberg symbol; metaplectic group

Full Text: DOI