Burnett, Gregory A.

Closed spherically symmetric massless scalar field spacetimes have finite lifetimes. (English)

Summary: The closed-universe recollapse conjecture is studied for a class of closed spherically symmetric spacetimes which includes those having as a matter source (1) a massless scalar field, (2) a perfect fluid obeying the equation of state $\rho = P$, and (3) null dust. It is proven that all timelike curves in any such spacetime must have a length less than $6 \max \Sigma (2m)$, where m is the mass associated with the spheres of symmetry and Σ is any Cauchy surface for the spacetime. The simplicity of this result leads us to conjecture that a similar bound can be established for the more general spherically symmetric spacetimes.

MSC:

83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory

83F05 Relativistic cosmology

Keywords:
closed-universe recollapse conjecture; spherically symmetric spacetimes; timelike curves

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.