This interesting paper deals with the spatially homogeneous Boltzmann equation
\[\frac{\partial f}{\partial t}(t, v) = Q(f, f)(t, v), \quad (t, v) \in (0, +\infty) \times \mathbb{R}^3; \quad f(0, v) = f_0(v), \quad v \in \mathbb{R}^3, \]
where \(f(t, v) \) is a nonnegative function, which describes the time evolution of the distribution of particles, which move with velocity \(v \), and \(Q(f, f)(t, v) \) is the collision operator. The main result is that for any initial data in \(L^1_{\text{loc}}(\mathbb{R}^3) \) with finite mass and energy, there exists a unique solution \(f \in C([0, +\infty); L^1_{\text{loc}}(\mathbb{R}^3)) \) for which the same two quantities are conserved. Here \(L^1_{\text{loc}}(\mathbb{R}^3) \) denotes the space of all functions \(f \) such that \(\|f\|_{1,s} = \int_{\mathbb{R}^3} f(v)(1+|v|^2)dv \) is bounded. Another interesting statement is that any solution satisfying certain bounds on moments of order \(s \) must necessarily have bounded energy. A time discretization of the Boltzmann equation with \(f_0 \in L^1_s(\mathbb{R}^3) \ (s \geq 2) \) is considered as well. Some estimates of the rate of convergence for the explicit and implicit Euler schemes are given. Two auxiliary results are of independent interest: a sharpened form of the Povzner inequality, and a regularity result for an iterated gain term.

Reviewer: Dimitar Kolev (Sofia)

MSC:
- 35Q35 PDEs in connection with fluid mechanics
- 82C40 Kinetic theory of gases in time-dependent statistical mechanics
- 76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics

Keywords:
- Boltzmann equation; implicit Euler schemes; Povzner inequalities; time discretization

Full Text: DOI Numdam EuDML

References:
[12] Ringeisen, E., Contributions à l’étude mathématique des equations cinétiques, ()

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.