Keskar, Jayant; Lyn, D. A.
Computations of a laminar backward-facing step flow at $Re = 800$ with a spectral domain decomposition method. (English) [Zbl 0948.76061]

From the summary: The two-dimensional laminar incompressible flow over a backward-facing step is computed using a spectral domain decomposition approach. A minimum number of subdomains (two) is used; high resolution being achieved by increasing the order of the basis Chebyshev polynomial. Results for the case of a Reynolds number of 800 are presented and compared in detail with benchmark computations.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

Keywords:
pseudo stress-free condition; zero normal gradient condition; two-dimensional laminar incompressible flow; backward-facing step; spectral domain decomposition; Chebyshev polynomial

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.