Gava, E.; Hammou, A. B.; Morales, J. F.; Narain, K. S.
D1/D5 systems in N=4 string theories. (English) [Zbl 0969.81607]

Summary: We propose CFT descriptions of the D1/D5 system in a class of freely acting \mathbb{Z}_2 orbifolds/orientifolds of type IIB theory, with sixteen unbroken supercharges. The CFTs describing D1/D5 systems involve $\mathbb{N}=(4, 4)$ or $\mathbb{N}=(4, 0)$ sigma models on $(\mathbb{R}^3 \times \mathbb{S}^1 \times \mathbb{T}^4)^N/\mathbb{S}_N \times \mathbb{Z}_2^N$. The resulting multiplicities for two-charge bound states are shown to agree with the predictions of U-duality. We raise a puzzle concerning the multiplicities of three-charge systems, which is generically present in all vacuum configurations with sixteen unbroken supercharges studied so far, including the more familiar type IIB on K3 case: the constraints put on BPS counting formulae by U-duality are apparently in contradiction with any CFT interpretation. We argue that the presence of RR backgrounds appearing in the symmetric product CFT may provide a resolution of this puzzle. Finally, we show that the whole tower of D-instanton corrections to certain “BPS saturated couplings” in the low energy effective actions match with the corresponding one-loop threshold corrections on the dual fundamental string side.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

Keywords:
conformal field theory; freely acting \mathbb{Z}_2 orbifolds; sigma model

Full Text: DOI arXiv

References:

[12] de Boer, J., Six-dimensional supergravity on $\mathcal{N}=3\times\text{ads}3$ and 2D conformal field theory, Jhep, 9905, 017, (1999)
[13] de Boer, J., Large $\mathcal{N}=\text{elliptic genus}$ and AdS/CFT correspondence - Zbl 1017.81041
[15] Beauville, A., Riemannian holonomy and algebraic geometry - Zbl 1144.53061
[16] Dijkgraaf, R., Instanton strings and hyperkahler geometry
[18] Vafa, C.; Witten, E., Dual string pairs with $\mathcal{N}=1$ and $\mathbb{N}=2$ supersymmetry in four dimensions, Nucl. phys. B, 447,
261, (1995)

[19] Sen, A., Duality and orbifolds - Zbl 0925.81174

[23] Seiberg, N.; Witten, E., The D1/D5 system and singular CFT - Zbl 0953.81076

[31] Dijkgraaf, R.; Moore, G.; Verlinde, E.; Verlinde, H., Discrete torsion and symmetric products

[33] Antoniadis, I.; Gava, E.; Narain, K.S.; Taylor, T., \textit{\text{Z}}2 projections to symplectic and orthogonal groups

[38] G understood as possible without claiming the completeness or perfect precision of the matching.