Critchlow, D. E.; Li, Shuying; Nourijelyani, K.; Pearl, D. K.

Some statistical methods for phylogenetic trees with application to HIV disease. (English)

[Zbl 0970.62074]

Summary: Phylogenetic trees are commonly used to describe the evolutionary history of a group of species, but may also be used to study an evolving virus such as HIV. These trees are high-dimensional, non-real-valued data objects, with a specific pattern of built-in dependencies that violate the assumptions of many traditional statistical methodologies. We have found that these problems can often be overcome by defining:

(i) an appropriate measure of correlation applicable to phylogenetic trees, (ii) an appropriate distance metric on trees, and (iii) an appropriate way to describe the probability distribution of phylogenetic trees.

This paper describes these statistical tools and applies them to a variety of HIV-related examples of phylogenetic tree data.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis

92D15 Problems related to evolution

Keywords:
molecular evolution; generalized correlation; tree comparison metrics; Markov chain Monte Carlo

Software:

fastDNAml

Full Text: DOI

References:

[7] Fontenot, J.D; VanCott, T.C; Parekh, B.S; Pau, C.P; George, J,R; Birx, D.L; Zolla-Pazner, S; Gorny, M.K; Gatewood, J.M, Presentation of HIV V3 loop epitopes for enhanced antigenicity, immunogenicity, and diagnostic potential, Aids, 9, 1121-1129, (1995)

[10] Lee, W.R; Syu, W.J; Du, B; Matsuda, M; Tan, S; Wolf, A.A; Essex, M; Lee, T.H, Nonrandom distribution of gp120 \textit{\text{N}}-linked glycosylation sites important for infectivity of human immunodeficiency virus type 1, (), 2213-2217

[17] Nourijelyani, K, Generalized correlation coefficients for phylogenetic trees, ()
[20] Leitner, T; Escamilla, D; Franzen, C; Uhlen, M; Albert, J, Accurate reconstruction of a known HIV-1 transmission history by phylogenetic tree analysis, (), 10864-10869
[23] Estabrook, G.F; McMorris, F.R; Meacham, C.A, Comparison of undirected phylogenetic trees based on subtrees of four evolutionary units, Systematic zoology, 34, 193-200, (1985)
[30] Efron, B; Halloran, E; Holmes, S, Bootstrap confidence levels for phylogenetic trees, (), 7085-7090
[33] Li, S; Pearl, D.K; Doss, H, Phylogenetic tree construction using Markov chain Monte Carlo, ()
[37] Man, J.F; Newton, M.A; Larget, B, Bayesian phylogenetic inference via Markov chain Monte Carlo methods, () · Zbl 1059.62675

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.