Let M be a three-manifold and $K_t(M)$ be its Kauffman bracket skein module, that is, the $\mathbb{C}[t, t^{-1}]$-module generated by the isotopy classes of framed links in M modulo the relations of the Kauffman bracket.

If K is a knot in the three-sphere and M is its complement, then $K_t(T^2 \times I)$ acts from the left on $K_t(M)$ with T^2 a torus. The peripheral ideal $I_t(K)$ is defined to be the left ideal of $K_t(T^2 \times I)$ annihilating the empty link \emptyset in M. The A-ideal, which is shown to be a generalization of the A-polynomial, can be defined by $I_t(K)$ [C. Frohman, R. Gelca, and W. LoFaro, Trans. Am. Math. Soc. 354, No. 2, 735-747 (2002; Zbl 0980.57002)]. Here the A-polynomial is a two-variable polynomial invariant of a knot defined by using the character variety of $SL(2; \mathbb{C})$-representations of $\pi_1(M)$ [D. Cooper, M. Culler, H. Gillet, D. D. Long and P. B. Shalen, Invent. Math. 118, No. 1, 47-84 (1994; Zbl 0842.57013)].

A pairing $K_t(D^2 \times S^1) \times K_t(M) \to \mathbb{C}[t, t^{-1}]$ is defined by glueing the solid torus $D^2 \times S^1$ to the knot complement M. Let $S_n(\alpha)$ be the skein obtained as a Chebyshev polynomial of $\alpha = \{0\} \times S^1 \subset D^2 \times S^1$. Then $(S_n(\alpha), \emptyset)$ defines the nth colored Kauffman bracket, a version of the colored Jones polynomial.

Using these facts the author proves that for a knot K and a nonzero element $\psi \in I_t(K)$ there exists a number ν such that the first ν colored Kauffman brackets of K and ψ determine all the other colored Kauffman brackets. He also gives a technical condition that the A-ideal of a knot determines all the Kauffman brackets. As an example a recursive formula for the colored Kauffman brackets of the trefoil knot is given.

Reviewer: Hitoshi Murakami (Tokyo)

MSC:
57M27 Invariants of knots and 3-manifolds (MSC2010)
46L85 Noncommutative topology
57M25 Knots and links in the 3-sphere (MSC2010)

Keywords:
Kauffman bracket; noncommutative geometry; Kauffman skein module

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.