Pitman, Jim

Forest volume decompositions and Abel-Cayley-Hurwitz multinomial expansions. (English)

A forest F of rooted trees may be associated with a certain product: each vertex i contributes the factor $x_i^{d_i}d_i$ where x_i is a formal variable associated with vertex i and d_i is the number of edges incident with vertex i and leading away from the root of the tree containing i in F. A multinomial expression for the sum of the products associated with all forests F with vertex set S and root set R, $R \subseteq S$, can readily be deduced from a version of Cayley’s formula or from first principles. By using this result to enumerate forests with various properties, the author develops a number of identities of the Hurwitz and Abel type. Related material appears in the author’s companion paper [Random mappings, forests and subsets associated with Abel-Cayley-Hurwitz multinomial expansions, Sémin. Lothar. Comb. 46, B46h (2001; Zbl 0990.05071)].

Reviewer: J.W.Moon (Edmonton)

MSC:

05A15 Exact enumeration problems, generating functions
05A19 Combinatorial identities, bijective combinatorics
05C05 Trees

Keywords:

Hurwitz identities; Abel identities; forest

Full Text: DOI

References:

[10] Broder, A.Z, A general expression for abelian identities, (), 229-245
[31] Kauh, D.E, The art of computer programming, (1968), Addison-Wesley Reading - Zbl 0191.17903
[35] Moon, J.W, Various proofs of Cayley's formula for counting trees, (), 70-78
[37] Na, H.S; Rapoport, A, A formula for the probability of obtaining a tree from a graph constructed randomly except for an "exogamous bias", Ann. math. statist., 38, 226-241, (1967) - Zbl 0154.19502
[38] Pemantle, R, Uniform random spanning trees, (), 1-54 - Zbl 0866.60058
[41] Pitman, J, Enumerations of trees and forests related to branching processes and random walks, (), 163-180 - Zbl 0908.05027
[44] Prüfer, H, Neuer beweis eines satzes über permutationen, Arch. math. physik, 27, 142-144, (1918) - Zbl 33.0449.04
[46] Rényi, A, On the enumeration of trees, (), 355-360

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2023 FIZ Karlsruhe GmbH
paper as accurately as possible without claiming the completeness or perfect precision of the matching.