Mo, Jiaqi
Singularly perturbed boundary value problems for elliptic equation with a curve of turning point. (English) [Zbl 1010.35030]

The following singularly perturbed problem is studied:

\[L_\varepsilon u = \varepsilon L u + f(x, y) \frac{\partial u}{\partial y} + g(x, y) u = 0, \ (x, y) \in \Omega \]

with

\[u(x, y) = \varphi_1(x), \ a \leq x \leq b, \ y \in \partial \Omega_1 \]

and

\[u(x, y) = \varphi_2(x), \ a \leq x \leq b, \ y \in \partial \Omega_2, \]

where \(\varepsilon > 0 \) and

\[L = a_{1,1}(x, y) \frac{\partial^2}{\partial x^2} + 2a_{1,2}(x, y) \frac{\partial^2}{\partial x \partial y} + a_{2,2}(x, y) \frac{\partial^2}{\partial y^2}. \]

We assume an ellipticity condition for \(L \): There exists \(\lambda > 0 \) such that, for all \(\xi = (\xi_1, \xi_2) \in \mathbb{R}^2 \),

\[a_{1,1}\xi_1^2 + 2a_{1,2}\xi_1\xi_2 + a_{2,2}\xi_2^2 \geq \lambda (\xi_1^2 + \xi_2^2). \]

Moreover, \(\Omega = \Omega_1 \cup \Omega_2 \) is a smooth bounded domain in \(\mathbb{R}^2 \).

It is proved that the solution \(u(x, y, \varepsilon) \) of this problem has the following expansion:

\[u(x, y, \varepsilon) = \varphi_1(x) \exp \left(- \frac{1}{\varepsilon} \int_{y_1(x)}^{y} \frac{f(x, y')}{{a_{2,2}(x, y')}} \, dy' \right) + \varphi_2(x) \exp \left(- \frac{1}{\varepsilon} \int_{y_2(x)}^{y} \frac{f(x, y')}{{a_{2,2}(x, y')}} \, dy' \right) + O(\varepsilon^{1/2}) \]

when \(\varepsilon \to 0 \).

Reviewer: Emmanuel Russ (Marseille)

MSC:
35J25 Boundary value problems for second-order elliptic equations
35B25 Singular perturbations in context of PDEs
35C20 Asymptotic expansions of solutions to PDEs

Keywords:
singular perturbation; turning point; elliptic equation

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.