Suslin, Andrei

On the vanishing of $H_3(SL_2(A, I), \mathbb{Z}/l)$. (English) Zbl 1025.19003

The Friedlander-Milnor isomorphism conjecture says that for any connected Lie group G, the canonical map $BG \to BG^{top}$ induces an isomorphism on homology groups with finite (trivial) coefficients in \mathbb{Z}/l, where BG denotes the classifying space of G as a discrete group while BG^{top} is the classifying space of G considered as a topological group. All known approaches to this conjecture use one or another form of the so-called rigidity conjecture. The author of this paper states different versions of the rigidity conjecture for arbitrary reductive algebraic groups G. The most interesting case is that of SL_n and especially of SL_2.

Let G be a split reductive algebraic group over a field F, A be a local henselian F-algebra with maximal ideal I, and $l \geq 1$ be an integer prime to the characteristic of F. The author constructs a Hochschild-Serre spectral sequence for non-normal subgroups, which degenerates, providing a relatively small complex computing homology of the congruence subgroup. By using this complex and its modifications, the author is able to compute the homology of $SL_2(A, I)$. In particular, it is proved that $H_3(SL_2(A, I), \mathbb{Z}/l)$ is trivial in the case $l = 2$.

For the entire collection see [Zbl 1013.00021].

Reviewer: Li Fu-an (Beijing)

MSC:

19D55 K-theory and homology; cyclic homology and cohomology
14F17 Vanishing theorems in algebraic geometry
20G15 Linear algebraic groups over arbitrary fields

Keywords:

homology; rigidity conjecture; Friedlander-Milnor isomorphism conjecture