Wu, Zili
Equivalent formulations of Ekeland’s variational principle. (English) Zbl 1029.49019

Summary: We prove that for some $0 < \alpha$ and $0 < \varepsilon \leq +\infty$ a proper lower semicontinuous and bounded below function f on a metric space (X,d) satisfies that for each $x \in X$ with $\inf_{X} f < f(x) < \inf_{X} f + \varepsilon$ there exists $y \in X$ such that $0 < \alpha d(x,y) \leq f(x) - f(y)$ iff for each such x this inequality holds for some minimizer z of f. Similar conditions are shown to be sufficient for f to possess minimizers, weak sharp minima and error bounds. A fixed-point theorem is also established. Moreover, these results all turn out to be equivalent to the Ekeland variational principle, the Caristi–Kirk fixed-point theorem and the Takahashi theorem.

MSC:
49J53 Set-valued and variational analysis
49J27 Existence theories for problems in abstract spaces
54H25 Fixed-point and coincidence theorems (topological aspects)

Keywords:
Ekeland’s variational principle; ε-condition of Takahashi; ε-condition of Hamel; weak sharp minima; error bounds; fixed point theorem

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.