Nelson, P.; Radcliffe, A. J.
Semi-regular graphs of minimum independence number. (English) Zbl 1030.05059

Summary: Many functions of the degree sequence of a graph give lower bounds on the graph’s independence number. In particular, \(\alpha(G) \geq R(d(G)) \), where \(R \) is the residue of the degree sequence of \(G \). We consider the precision of this estimate when it is applied to semi-regular degree sequences, showing that the residue nearly always gives the best possible estimate on independence number: when \(d \) is semi-regular and graphic, we construct a graph \(G \) realizing \(d \) with \(R(d) \leq \alpha(G) \leq R(d) + 1 \). Moreover, we determine explicitly which inequality is strict. We prove this directly for most semi-regular sequences, giving an outline of proof for the remainder.

MSC:
05C35 Extremal problems in graph theory
05C07 Vertex degrees

Keywords:
Independence number; Degree sequence; Finite simple graph; Estimating lower bounds

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.