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Spin glasses are the prime example of many particle systems with highly irregular and non-cooperative
interactions. The mathematical models for such systems that were proposed in the 1970’s are formally
rather simple spin systems of the Ising type: one considers a graph G and places spin variables si on each
vertex i. Each (ij) is equipped with an random variable Jij that represents the interaction between spins.
The key object of interest is the Hamiltonian function HG(s; J) =

∑
(ij)∈G Jijsisj . One is interested in

Gibbs measure e−βHΓ/Zβ,N as a function of β for typical realizations of the couplings J . The subject of
the book concerns mean field spin glasses, in which case G is the complete graph on N vertices.
From a purely mathematical point of view, the SK model can be described as a Gaussian process on
the hypercube {−1, 1}N . The theoretical physics community, through an ingenious intuition of Gior-
gio Parisi, has devised methods to compute fine properties of these systems, such as the value of
limN↑∞ maxs N−1HN (s), that were unaccessible to the conventional tools of mathematical analysis. That
the method of Parisi [see M. Mézard, G. Parisi and M. A. Virasoro, Spin glass theory and beyond, Lect.
Notes Phys. 9, Teaneck, NJ (1987; Zbl 0992.82500)] was from a mathematical point of view obscure, to
say the least, was motivation enough for the author to set out a systematic analysis of the problem with
rigorous mathematical tools. The book gives a comprehensive account of this endeavor by its author, as
well as some selected works of other people in the same field.
The mathematics in this problem involved is not limited to the SK model, nor is it to Gaussian processes
on the hypercube. In fact, it had been long noticed that a great number of other problems that are highly
relevant in diverse application areas fall into the same category. These include, but are not limited to,
models of neural networks, such as perceptron models and the Hopfield model, the K-SAT and other
problems from computer science, which are all covered here.
The approach presented here orbits around the so-called cavity method. The cavity method essentially
consists in the attempt to compute key quantities of interest (functionals of the random process at hand)
by inductions over the number N (the volume). That is, given a function FN of the process, one tries to
derive a recursion relation for this function in the variable N . Usually, in this attempt it turns out that
no closed form can be achieved, and a number of new functions have to be introduced. The goal is to
show that it is enough to introduce a finite set of such functions, while all further terms produced in the
program can be treated as error terms. The limit of the function FN can then be obtained as the solution
of a fix-point equation. This basic idea was present in non-rigorous work of Parisi, Mézard and others,
and the first attempt to exploit it for rigorous work was made by Pastur and Shcherbina in the early
1990’s, but Talagrand has turned this a powerful tool to prove that results obtained with the help of the
replica method at least in the simpler situations where so-called “replica symmetry” holds. Unfortunately,
the book appeared too early to include the last triumph of the method, the author’s announced proof
of the correctness of the Parisi solution of the SK model in general, based on a brilliant and ingenious
idea of F. Guerra [Broken replica symmetry bounds in the mean field spin glass model. Commun. Math.
Phys. 233, 1–12 (2003; Zbl 1013.82023)] (the latter, fortunately, is explained in Section 2.11.).
The book is divided into 8 Chapters and an appendix. The first explains some basic ideas in the simple
setting of the Random Energy model, i.e. in the context of independent random variables. This allows
the reader to get acquainted to some of the simpler techniques in a context that is easy to grasp.
The second chapter is devoted to the standard Sherrington-Kirkpatrick model. The bulk of the 170 pages
is devoted to the high temperature, respectively “replica-symmetric” phase which is analyzed in great
detail. This section explains how to use the cavity method to obtain conditions under which the Gibbs
measures converge to (random) product measures, and to compute the parameters of these measures.
The somewhat alternative approach of F. Guerra and F. L. Toninelli [Quadratic replica coupling in the
Sherrington-Kirkpatrick mean field spin glass model. J. Math. Phys. 43, 3704–3716 (2002)], that uses
Gaussian interpolation methods is also explained. The culmination of the section is Chapter 2.11, where
the proof of Guerra, showing that the free energy computed using the Parisi replica symmetry breaking
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scheme is a rigorous upper bound for the true free energy of the model for all values of the temperature
and the magnetic field.
The following three sections take us into the realm of neural network models. Section 3 deals with the
capacity of the Ising perceptron. Basically, the problem here is as follows. Take a vector g made of N
i.i.d. standard normal random variables, consider the half space made of vectors x such that (x, g) ≥ 0.
Taking M such Gaussian vectors, one is interested in the volume of the intersection of all these half-spaces
intersected with the hypercube {−1, 1}N . This should behave like exp(−ϕ(M/N)), if both M and N are
large. This purely geometric problem can be cast into a problem on Gibbs measures by associating to each
configuration s a weight that increases whenever one more constraint is satisfied., and zero otherwise, i.e.
defining HN (s) =

∑M
k=1 1(x,gk)≥0. The computation of the partition function Zβ,N =

∑
s exp(HN (s)),

can then be seen as a “softened” version of the original counting problem. The problem can be further
generalized by replacing the indicator function by a smooth approximation. The resulting problem is
again susceptible to be treated with the replica method. The last part of the chapter is devoted to remove
boundedness conditions on the function u, using methods inspired from a paper by M. Shcherbina and
B. Tirozzi [Rigorous solution of the Gardner problem. Commun. Math. Phys. 234, 383–422 (2003; Zbl
1034.82042)], used in the case of the analogous problem where the hypercube is replaced by the N -
dimensional unit sphere, and that is the subject of Section 4.
Section 5 treats the Hopfield model. Basically we encounter the same type of methods as before, with
the same types of results: a domain of parameters is established where the predictions of the heuristic
methods predict replica symmetry, and it is shown that these predictions are correct (on a subset of this
set). In this case, this is not limited to low temperatures. The main new feature here is the necessity to
have a priori some control on the Gibbs measures that says that it concentrates on the number of disjoint
small subsets of the configuration space. On each of these sets, the cavity method is then applicable. The
decomposition of the Gibbs measure observed in the Hopfield model is a desired feature of the model
and closely related to its purpose, namely to serve as a model of associative memory. In fact, the sets
where the measure concentrates (at low temperatures) are neighborhoods of the “stored patterns”, a set of
(random) spin configurations on which the Hamiltonian depends. In the model described in the following
section, the p-spin SK model with p large, a similar lumping phenomenon occurs spontaneously. Here the
model is again a Gaussian process on the hypercube, with covariance proportional to the p-th power of the
scalar product (“overlap”) of the spin configurations. This section makes use of another amazing idea due
to F. Guerra and S. Ghirlanda [General properties of overlap probability distributions in disordered spin
systems. Towards Parisi ultrametricity. J. Phys. A, Math. Gen. 31, 9149–9155 (1998; Zbl 0953.82037)], the
so-called Ghirlanda-Guerra identities. These relations, that follow essentially from Gaussian integration
by parts formulas, give some a priori structural information on the random geometrical structure of the
Gibbs measures.
The two final sections deal with further applications of the methods to the dilute SK model, the K-sat
(satisfiability) problem, and the random matching problem.
Each section of the book ends with some comments on the literature. One would have appreciated those
to be more detailed and enlightening. The author has apparently put a great effort into rendering the
exposition as clear as possible. In spite of these efforts, few will find the book easy to read, but for this
the nature of the problems is to blame rather than the author.
The book will, certainly, find a favorite place on the desk of anyone working in the field.
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