Bendikov, Alexander; Saloff-Coste, Laurent
On the sample paths of Brownian motions on compact infinite dimensional groups. (English)

The authors study the regularity of the paths of certain Brownian motions on the infinite-dimensional torus and other compact connected groups in terms of the intrinsic distance d on the group. In particular, for each $\lambda \in [0, 1]$, examples of such processes $(X_t)_{t \geq 0}$ are constructed such that, for $t \to 0$, $d(X_t, X_0)$ roughly behaves like $t^{(1-\lambda)/2}$ almost surely. Moreover, an associated result on the modulus of continuity is derived. These results are quite different to the case of finite-dimensional Lie groups where, independent of the dimension like for the classical Brownian motion, a behavior of order $\sqrt{4 \ln(1/t)}$ holds.

Reviewer: Michael Voit (Dortmund)

MSC:
60J60 Diffusion processes
60B99 Probability theory on algebraic and topological structures
31C25 Dirichlet forms
47D07 Markov semigroups and applications to diffusion processes

Keywords:
infinite-dimensional compact groups; Brownian motion; regularity of paths

Full Text: DOI Euclid

References:

[31] ITHACA, NEW YORK 14853-4201 E-MAIL: bsc@math.cornell.edu bendikov@math.cornell.edu

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.