The general discrete population model with delay $x_{n+1} = a_n x_n + \lambda h_n f(x_{n-\tau(n)})$ is studied, where $a_n, b_n : \mathbb{Z} \to \mathbb{R}$ and $\tau(n) : \mathbb{Z} \to \mathbb{N}$ are ω-periodic. Using the Krasnoselskii fixed point theorem, the authors obtain various conditions on f which guarantee that the equation has at least one solution and two solutions, respectively, for a range of λ.

Reviewer: Qingkai Kong (DeKalb)

MSC:
- 39A10 Additive difference equations
- 92D25 Population dynamics (general)

Keywords:
periodic solution; positive solution; discrete population model