Authors’ abstract: Given positive integers $k \leq m \leq n$, a graph G of order n is (k, m)-pancyclic if for any set of k vertices of G and any integer r with $m \leq r \leq n$, there is a cycle of length r containing the k vertices. Minimum degree conditions and minimum sum of degree conditions of nonadjacent vertices that imply a graph is (k, m)-pancyclic are proved. If the additional property that the k vertices must appear on the cycle in a specified order is required, then the graph is said to be (k, m)-pancyclic ordered. Minimum degree conditions and minimum sum of degree conditions for nonadjacent vertices that imply a graph is (k, m)-pancyclic ordered are also proved. Examples showing that these constraints are best possible are provided.

Reviewer: Lutz Volkmann (Aachen)