He, Wansheng; Li, Wantong; Yan, Xinxue
Global attractivity of the difference equation $x_{n+1} = \alpha + (x_{n-k}/x_n)$. (English) Zbl 1056.39021

The authors consider the following rational recursive sequence: $x_{n+1} = \alpha + (x_{n-k}/x_n)$, $n = 0, 1, 2, \ldots$ where $\alpha \in (-\infty, 1)$ is a real number, $k \geq 1$ is an integer, and the initial conditions x_{-k}, \ldots, x_0 are arbitrary real numbers. They investigate the periodic character, invariant intervals and the global attractivity of all negative solutions. They prove the following

Theorem: (1) (i) If $\alpha < -3$, then the equilibrium \bar{x} of Eq. (*) is locally asymptotically stable.

(ii) If $\alpha \in [-2, -1) \cup (-1, 0)$, then the equilibrium \bar{x} of Eq. (*) is unstable.

(iii) If $\alpha \in [-3, -2) \cup [0, 1)$, then the equilibrium \bar{x} of Eq. (*) is a saddle point.

(2) Eq. (*) has no negative solution with prime period two for $\alpha \neq 1$.

(3) Let $\tau > 0$ be an arbitrary positive real number. Assume that $\alpha \in (-\infty, -(\tau + 5)]$, and the initial values $x_{-k}, \ldots, x_0 \in [\alpha - \tau, \alpha + 2]$. Then the interval $[\alpha - \tau, \alpha + 2] + \tau, \alpha$ is an invariant interval of Eq. (*).

(4) Assume $\alpha \in (-\infty, -(\tau + 5)]$. Then the unique negative equilibrium \bar{x} of Eq. (*) is a global attractor \bar{x} with a basin $S = [\alpha - \tau, \alpha + 2] + \tau, \alpha$.

Reviewer: Akira Tsutsumi (Suita)

MSC:
- 39A12 Discrete version of topics in analysis
- 39A10 Additive difference equations

Keywords:
- difference equation; global attractivity; stability; period two solution; asymptotics; negative solutions; invariant interval; basin; asymptotic stability

Full Text: DOI

References:

[2] Cunningham, K.C.; Kulenovic, M.R.S.; Ladas, G.; Valicenti, S.V., On the recursive sequence $\text{\textit{x}}(n) = (x + \beta x_{n-1})/(bx_{n-1} + \gamma x_{n-2})$, Nonlinear anal. TMA, 47, 4603-4614, (2001) · Zbl 1042.39522

[3] H.M. El-Owaidy, A.M. Ahmed, M.S. Mousa, On asymptotic behaviour of the difference equation $\text{\textit{x}}(n+1) = \frac{x + (x_{n-1}-1)}{x_{n-1}}$, Appl. Math. Comput. (in press)

[5] Kuruklis, S.A., The asymptotic stability of $\text{\textit{x}}(n+1) - \alpha x_{n+1} + \beta x_n - k = 0$, J. math. anal. appl., 188, 719-731, (1994) · Zbl 0842.39004

Aboutaleb, M.T.; El-Sayed, M.A.; Hamza, A.E., Stability of the recursive sequence \(x_{n+1} = (\alpha - \beta x_n) / (\gamma + x_{n-1})\), J. math. anal. appl., 261, 126-133, (2001) · Zbl 0990.39009

DeVault, R.; Kosmala, W.; Ladas, G.; Schultz, S.W., Global behavior of \(y_{n+1} = (p + y_{n-k}) / (qy_n + y_{n-k})\), Nonlinear anal. TMA, 47, 4743-4751, (2001) · Zbl 1042.39523

El-Owaidy, H.M.; El-Afifi, M.M., A note on the periodic cycle of \(x_{n+2} = (1 + x_{n+1}) / x_n\), Appl. math. comput., 109, 301-306, (2000) · Zbl 1023.39010

Yan, X.X.; Li, W.T., Global attractivity in the recursive sequence \(x_{n+1} = (x - \beta x_n) / (\gamma - x_{n-1})\), Appl. math. comput., 128, 2-3, 415-421, (2001)

Yan, X.X.; Li, W.T.; Sun, H.R., Global attractivity in a higher order nonlinear difference equation, Appl. math. E-notes, 2, 51-58, (2002) · Zbl 1004.39010

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.