Graphs considered in this paper are finite, undirected, and possibly with parallel edges or loops. The maximum genus \(\gamma_M(G) \) of a graph \(G = (V, E) \) is the largest integer \(k \) such that \(G \) can be 2-cell embedded into an orientable surface \(S \) of genus \(k \). Euler’s formula implies that \(\gamma_M(G) \leq \lfloor \beta(G)/2 \rfloor \), where \(\beta(G) = |E(G)| - |V(G)| + 1 \). The graph \(G \) is said to be upper embeddable if \(\gamma_M(G) = \lfloor \beta(G)/2 \rfloor \). Let \(T \) be a spanning tree of the connected graph \(G \). Let \(\xi(G, T) \) denote the number of components of \(G \setminus E(T) \) that have odd number of edges. The Betti deficiency \(\xi(G) \) is defined to be \(\min_T \xi(G, T) \), where the minimum is taken over all spanning trees \(T \) of \(G \). It is known that \(\gamma_M(G) = (\beta(G) - \xi(G))/2 \) and \(G \) is upper embeddable if and only if \(\xi(G) \leq 1 \).

The main theorem proved in this paper reads as follows. Let \(G \) be a connected graph satisfying \(\xi(G) = k \geq 2 \). For any spanning tree \(T \) of \(G \), there exist \(k \) vertex-disjoint connected induced subgraphs \(H_1, \ldots, H_k \) such that, for every \(1 \leq i \leq k \), (i) \(\beta(H_i) \) is an odd number, and (ii) \(T \cap H_i \) is connected and the set \(E(H_i, G) \) consisting of edges that have one end in \(H_i \) and the other end not in \(H_i \) is included in \(E(T) \). Some consequences of the maximum genus of a graph are derived from this main result.

Reviewer: Ko-Wei Lih (Nankang)

MSC:

05C05 Trees
05C10 Planar graphs; geometric and topological aspects of graph theory

Keywords:

upper embeddable; Betti deficiency; maximum genus