Yang, Shijun; Wang, Xinghua
New quadrature formulas based on the zeros of the Chebyshev polynomials of the second kind. (English) Zbl 1073.65021

Quadrature formulas are derived for integrals
\[\int_{-1}^{1} f(x)w(x) \, dx, \quad w(x) = (1 - x^2)^{1/2}, \text{ or } w(x) = (1 - x^2)^{-1/2} \]
which are accurate for polynomials of respective degree \(2(s+1)n + 2s - 1\), \(2(s+1)n + 2s + 1\), \(s, n \in \mathbb{N}\). The formulas employ divided differences at the zeros of \((1 - x^2)Q_n(x)\) where \(Q_n(x)\) is an \(n\)-th degree Chebyshev polynomial of the second kind. When \(s = 0\) and \(n\) is replaced by \(2n - 1\) the second formula reduces to a formula given by A. K. Varma and E. Landau [ibid. 30, No. 3-6, 213–220 (1995; Zbl 0833.41027)] exact for polynomials of degree \(4n - 1\). The formulas are related to the Gauss-Turan quadrature formula.

Reviewer: J. B. Butler jun. (Portland)

MSC:
- 65D32 Numerical quadrature and cubature formulas
- 41A55 Approximate quadratures

Keywords:
Quadrature formulas; Chebyshev polynomials; Divided differences

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.