Inequalities for quantum relative entropy. (English) Zbl 1076.15019

Linear Algebra Appl. 401, 159-172 (2005).

Given positive semi-definite matrices $A, B \in M_n(C)$, the authors prove the following log-majorization:

$$A^{(1+q)/2} B^q A^{(1+q)/2} \prec (\log) A^{1/2} B^p A^{1/2},$$

where $0 < q \leq p$. This inequality is then used to reprove a result from T. Ando and F. Hiai [Linear Algebra Appl. 197–198, 113–131 (1994; Zbl 0793.15011)], and this result is then used to prove several inequalities regarding α-power means. The rest of the paper is devoted to proving a generalized thermodynamic inequality and its equivalence with the Peierls-Bogoliubov inequality and others.

Reviewer: Martín Argerami (Regina)

MSC:

15A45 Miscellaneous inequalities involving matrices
15A90 Applications of matrix theory to physics (MSC2000)
47A63 Linear operator inequalities
82B10 Quantum equilibrium statistical mechanics (general)

Keywords:
relative entropy; logarithmic trace inequalities; Peierls-Bogoliubov inequality; thermodynamic inequality

Full Text: DOI Link

References:

[8] Furuta, T., $(A\geq B\geq 0)$ ensures $(B^{r}A^{-\frac{1}{r}}B^{\frac{1}{r}}) \leq (\frac{1}{q}A\geq (B^{p}A^{\frac{1}{p}}B^{\frac{1}{p}})^{q/p})A^{1/2}$ for $(r\geq 0, p\geq 0, q\geq 1, \frac{1}{q}+(1+2r)q=\frac{p}{q}+(p+2r)$, Proc. Amer. Math. Soc., 101, 85-88 (1987) · Zbl 0721.47023

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.