Mason, J. C.
The minimality properties of Chebyshev polynomials and their lacunary series. (English) [Zbl 1078.33007]

Let T_n, U_n, V_n and W_n be four kinds of Chebyshev polynomials

$$T_n(x) = \cos(n\theta), \quad U_n(x) = \frac{\sin((n + 1)\theta)}{\sin \theta},$$

$$V_n(x) = \frac{\cos((n + \frac{1}{2})\theta)}{\cos \left(\frac{\theta}{2} \right)}, \quad W_n(x) = \frac{\sin \left(\frac{(n + \frac{1}{2})\theta}{\sin \left(\frac{\theta}{2} \right) \right)}{\sin \left(\frac{\theta}{2} \right)},$$

where $x = \cos \theta, 0 \leq \theta \leq \pi$. Define weight functions $w_p(x), -1 \leq x \leq 1$, for these polynomials as follows: if $1 \leq p < \infty$, then

$$w_p(x) = \begin{cases} (1 - x^2)^{-\frac{1}{p}} & \text{for } T_n, \\ (1 - x^2)^{\frac{1}{p}} & \text{for } U_n, \\ (1 + x)^{\frac{1}{p}}(1 - x)^{-\frac{1}{2}} & \text{for } V_n, \\ (1 - x)^{\frac{1}{p}}(1 + x)^{-\frac{1}{2}} & \text{for } W_n \end{cases}$$

and if $p = \infty$

$$w_\infty(x) = \lim_{p \to +\infty} (w_p(x))^{\frac{1}{p}}.$$

The author proves the following theorems that extend a number of known results on Chebyshev polynomials.

Chebyshev’s equioscillation theorem: Let p_n be a polynomial, $\deg p_n = n$, and f be continuous. For four cases of $w_\infty(x)$, the norm

$$\|f - p_n\| = \max_{-1 \leq x \leq 1} |w_\infty(x)(f(x) - p_n(x))|$$

is minimised if and only if $w_\infty(f - p_n)$ attains its maximum magnitude with alternating signs on at least $n + 2$ consecutive points of $[-1, 1]$.

The L_p minimality property: The monic polynomials which are corresponding T_n, U_n, V_n, W_n are the best L_p approximations to zero on $[-1, 1]$ with respect to their $w_p(x), 1 \leq p \leq \infty$.

A sufficient interpolation condition for weight L_1 approximation: Let f be a continuous function on $[-1, 1]$. A polynomial p_n, $\deg p_n = n$, is the best L_1 approximation of f with respect to $w_1(x)$ if zeros of $f - p_n$ coincide with zeros of the relevant n-th Chebyshev polynomial corresponding to $w_1(x)$.

The best L_p approximation by partial sums of lacunary series: Let S^r_n ($r = 1, 2, 3, 4$) denote the sum of the first n terms of the respective series:

(i) $S^1(x) \sim \sum_{k=1}^{\infty} a^k T_{k^r}(x)$,
(ii) $S^2(x) \sim \sum_{k=1}^{\infty} a^k U_{k-1}(x)$,
(iii) $S^3(x) \sim \sum_{k=1}^{\infty} a^k V_{\frac{1}{2}(k^r-1)}(x)$,
(iv) $S^4(x) \sim \sum_{k=1}^{\infty} a^k W_{\frac{1}{2}(k^r-1)}(x)$.

Then S^r_n are the minimax approximation to $S^r(r = 1, 2, 3, 4)$ with respect to the corresponding $w_\infty(x)$, given that a is real, b is an odd integer, and $|ab| \leq 1$. The variants of the last theorem are also proved for $p = 1$ and $1 < p < \infty$.

Reviewer: Aleksey A. Dovgoshey (Donetsk)

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
42C15 General harmonic expansions, frames
Keywords:
Chebyshev polynomials; lacunary Chebyshev series; Chebyshev interpolation; best and near-best polynomial approximation

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.