Homoclinic solutions for a class of the second order Hamiltonian systems. (English)

Summary: We study the existence of homoclinic orbits for the second-order Hamiltonian system \(\ddot{q} + V_q(t,q) = f(t) \), where \(q \in \mathbb{R}^n \) and \(V \in C^1(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}) \), and \(V(t,q) = -K(t,q) + W(t,q) \) is \(T \)-periodic in \(t \). A map \(K \) satisfies the “pinching” condition \(b_1|q|^2 \leq K(t,q) \leq b_2|q|^2 \), \(W \) is superlinear at infinity and \(f \) is sufficiently small in \(L^2(\mathbb{R}, \mathbb{R}^n) \). A homoclinic orbit is obtained as a limit of \(2kT \)-periodic solutions of a certain sequence of the second-order differential equations.

MSC:

37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
70H05 Hamilton’s equations

Keywords:
homoclinic orbit; Hamiltonian system; critical point; periodic solutions

Full Text: DOI

References:

Cited in 3 Reviews
Cited in 172 Documents

© 2021 FIZ Karlsruhe GmbH
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.