Ragnarsson, Kári

Alternative stable homotopy classification of BG_p^\wedge.

In [Topology 34, 633–649 (1995; Zbl 0835.55011)], J. Martino and S. Priddy gave necessary and sufficient conditions for the p-completed classifying spaces BG_p^\wedge and $BG_p'^\wedge$ of two finite groups G and G' to be stably homotopy equivalent. In the same paper they also provided an example of two finite groups whose p-completed classifying spaces are stably homotopy equivalent but not (unstably) homotopy equivalent. B. Oliver on the other hand recently has shown in [Mem. Am. Math. Soc. 848, 102 p. (2006; Zbl 1095.55008) and Math. Proc. Camb. Philos. Soc. 137, No. 2, 321–347 (2004; Zbl 1077.55006)] that BG_p^\wedge and $BG_p'^\wedge$ are homotopy equivalent provided there is a fusion preserving group isomorphism $S \to S'$ for a p-Sylow subgroup S of G and a p-Sylow subgroup S' of G'. Here an isomorphism $\varphi : S \to S'$ is called fusion preserving if for any two subgroups P and Q of S a group isomorphism $\alpha : P \to Q$ is induced by conjugation in G if and only if the corresponding isomorphism $\varphi\alpha\varphi^{-1} : \varphi(P) \to \varphi(Q)$ is induced by a conjugation in G'.

Using the Lewis-May-McClure version of the Segal conjecture [L. G. Lewis, J. P. May and J. E. McClure, Current trends in algebraic topology, Semin. London/Ont. 1981, CMS Conf. Proc. 2, No. 2, 165–179 (1982; Zbl 0572.55006)], the author of the present paper shows that the fusion system for a pair (G, S) consisting of a finite group G and a choice of a p-Sylow subgroup S can be recovered from the stable category over $\Sigma^\infty BG_p^\wedge$. From this he obtains the main result of the paper which says that BG_p^\wedge and $BG_p'^\wedge$ are homotopy equivalent if and only if there is an isomorphism $S \to S'$ between p-Sylow subgroups $S \subset G$ and $S' \subset G'$ and a (stable) homotopy equivalence $\Sigma^\infty BG_p^\wedge \to \Sigma^\infty BG_p'^\wedge$ which make the obvious associated diagram of p-completed classifying spaces in the stable homotopy category commutative.

Reviewer: Michael Joachim (Münster)

MSC:

55R35 Classifying spaces of groups and H-spaces in algebraic topology

20J06 Cohomology of groups

55P42 Stable homotopy theory, spectra

Keywords:

stable homotopy; classifying spaces; fusion systems; finite groups

Full Text: DOI