Dette, Holger; Melas, Viatcheslav B.; Pepelyshev, Andrey
Local c- and E-optimal designs for exponential regression models. (English) Zbl 1095.62086

Summary: We investigate local E- and c-optimal designs for exponential regression models of the form $\sum_{i=1}^{k} a_i \exp(-\mu_i x)$. We establish a numerical method for the construction of efficient and local optimal designs, which is based on two results. First, we consider for fixed k the limit $\mu_i \to \gamma$ ($i = 1, \ldots, k$) and show that the optimal designs converge weakly to the optimal designs in a heteroscedastic polynomial regression model. It is then demonstrated that in this model the optimal designs can be easily determined by standard numerical software.

Secondly, it is proved that the support points and weights of the local optimal designs in the exponential regression model are analytic functions of the nonlinear parameters μ_1, \ldots, μ_k. This result is used for the numerical calculation of the local E-optimal designs by means of a Taylor expansion for any vector (μ_1, \ldots, μ_k). It is also demonstrated that in the models under consideration E-optimal designs are usually more efficient for estimating individual parameters than D-optimal designs.

MSC:
62K05 Optimal statistical designs
65C60 Computational problems in statistics (MSC2010)
62J02 General nonlinear regression
41A50 Best approximation, Chebyshev systems
60F05 Central limit and other weak theorems

Keywords:
Exponential models; Local optimal designs; Chebyshev systems; Heteroscedastic polynomial regression

Full Text: DOI

References:
problems. Journal of the Royal Statistical Society, Series B 54, 569–583 · Zbl 0774.62080

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.